

INTERNATIONAL OPERATIONS & MAINTENANCE CONFERENCE IN THE ARAB COUNTRIES

UNDER THE THEME

"MANAGING MAINTENANCE WITHIN INDUSTRY 4.0"
CONICIDE WITH THE 16TH ARAB MAINTENANCE EXHIBITION

Verifying Your Condition Monitoring Programs

James (Jim) Kennedy CPEng, CFAM, CAMA

Coverage

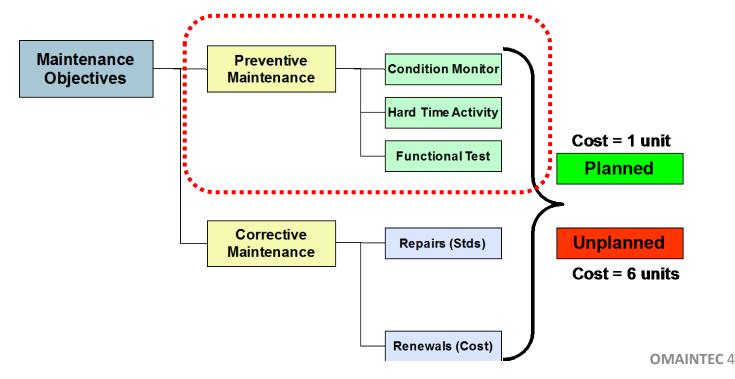
- Role of preventive maintenance programs
 - Purpose of the condition monitoring program
- The condition monitoring process model
 - Why this model is so important
- Setting Condition Based Maintenance Task Periods
 - A verified risk based formula from MIL-STD-2173
 - Issues of sensitivity and data accuracy
- A solution to resolving data measurement
 - Role of James T Reasons work in assessing human error/violation
- A case study of outcomes achieved
- Summary

1978 Reliability Centered Maintenance Report

The 1978 Nowlan and Heap Report for US DoD titled reliability centered maintenance noted:

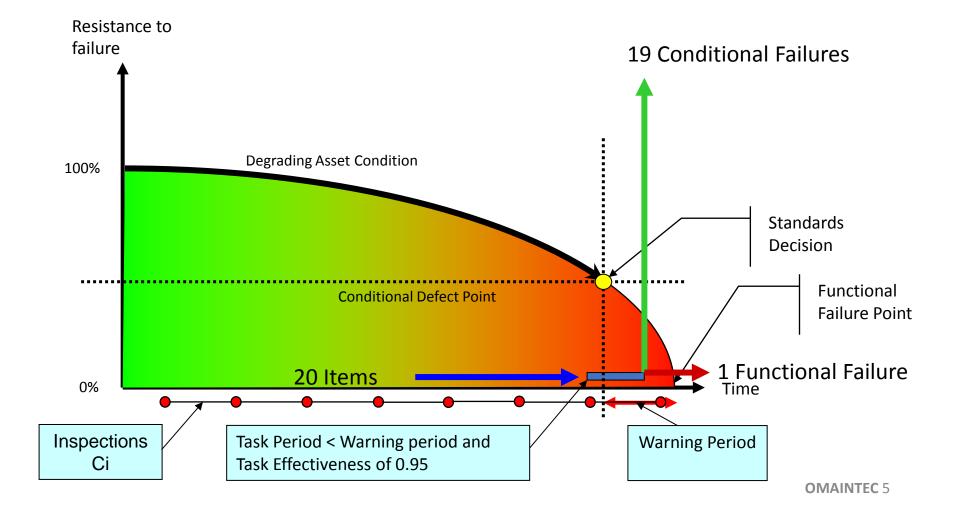
- Most equipment had and still has a random failure pattern characteristic
- Condition monitoring is considered the best solution

% 1968	Nowlan and Heap AD AO66579	% 1982	% 2001
4		3	2
2		17	10
5		3	17
7		6	9
14		42	56
68		29	6
89%	Reliability Centered Maintenance	77%	71%

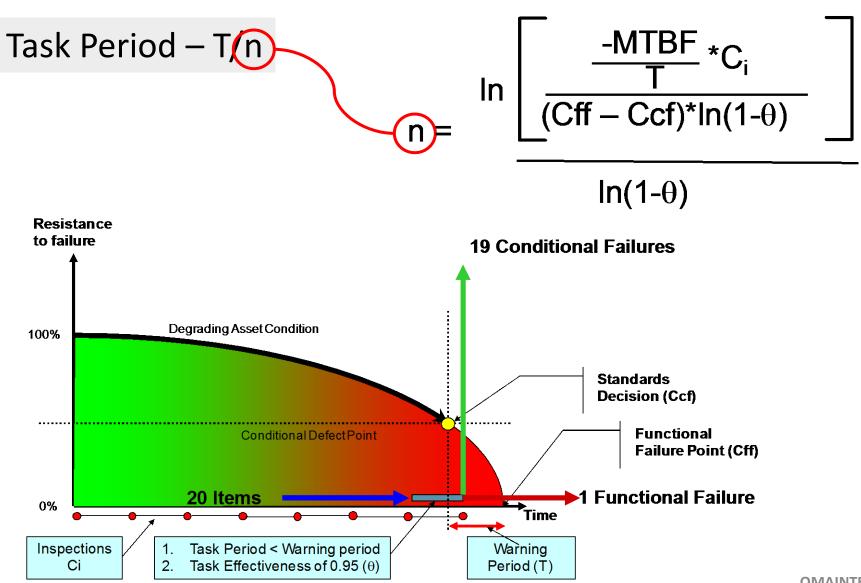

OMAINTEC 3

Source NASA

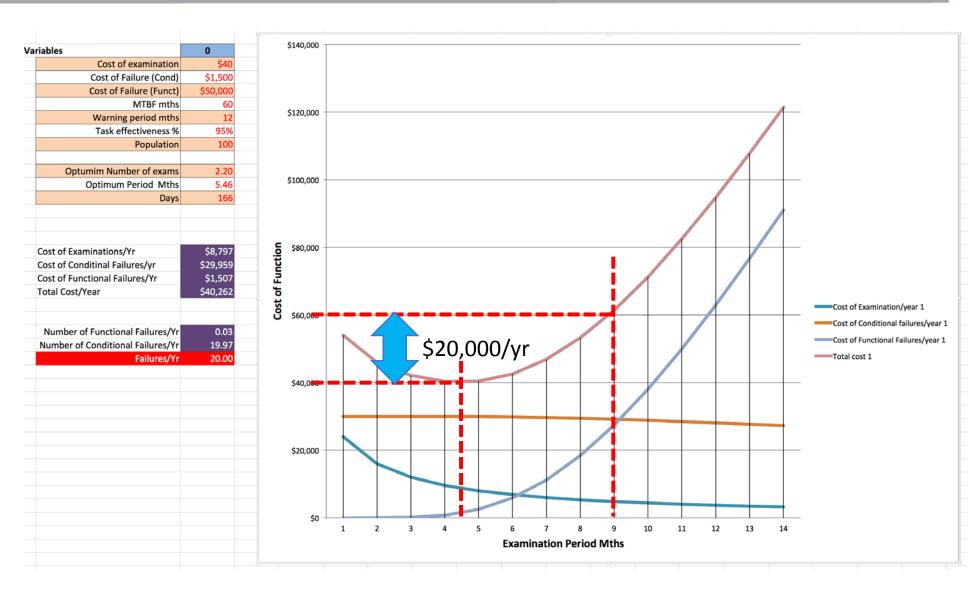
AM Council – Types of maintenance


- Maintenance is all activities necessary to retain an item in or return it to a serviceable condition
- Maintenance types were derived from the Nowlan and Heap report
- Role of preventive maintenance programs is to achieve inherent/desired levels of safety and reliability designed into the equipment.

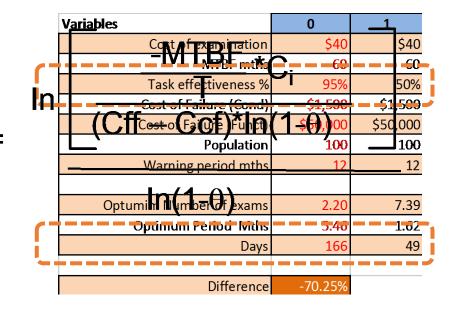
Condition Monitoring Process Model

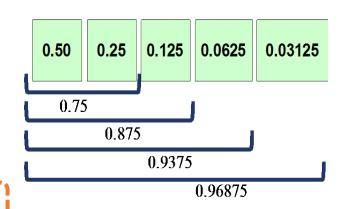


- Drawn from the Nowlan and Heap report
- Describes 6 variables related to likelihood and consequence


MIL-STD-2173AS Reliability Centered Maintenance

Optimising scenario and cost sensitivity

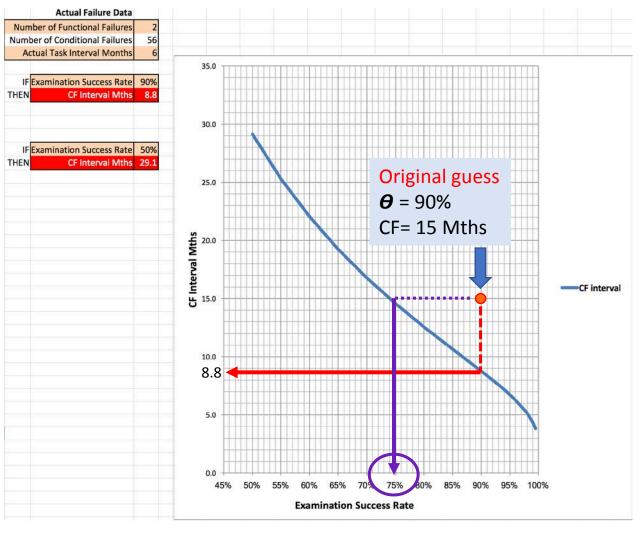

Some data matters and some does not!


Financials have little impact

Technicals have some impact

Organisational really matters

		Change multiple/Task period Vary		
Formula Variable	Start Value	1.5	5.0	10.0
Cost Inspection	\$40	7%	32%	54%
Cost Conditional Failure	\$1,500	0%	2%	5%
Cost Functional Failure	\$50,000	-6%	-20%	-26%
Mean time between Failures (mth)	60	7%	32%	54%
		0.75	0.50	0.25
Warning Time (mth)	12.00	-22%	-44%	-68%
		ი ფი	Δ75	0.50
Task Effectiveness	0.95	-20%	-48%	-70%



Verifying the estimated task period

Process Steps

- 1. Guess T and task success **\theta**
- 2. Find Task Period (Guess)
- 3. Use Task Period
- 4. Collect new failure data
- 5. Create a Reality Curve
- 6. Update MTBF results
- 7. Update task effectiveness (Reason value)
- 8. Determine new value of T (CF Interval)
- 9. Produce new plan (Voila)
- 10. But we are not in control!

Role of human error and violation – James T Reason

To err is human:

- Recognition failures
- Memory lapses
- Slips of action
- Errors of habit
- Mistaken assumptions
- Knowledge based errors

To adapt is also human

Violations (routine breaking rules, optimising and situational adaption)

These actions are, of themselves, not bad – they are NORMAL!.

"Our assets and their support systems must be designed to be tolerant of these **expected** human error"

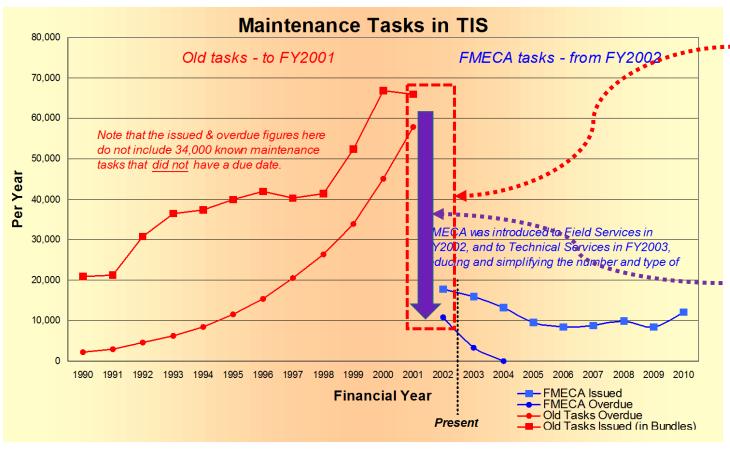
Assessing task effectiveness - Reason

Task effectiveness can be a combination of human error and violation

•	Select the task scenario
	description (design)

- Select the behaviour (culture)
- Assess combined task effectiveness
- Recalculate Task Period
- Make the savings!

Seq	Task Description	Effect	Violation Behaviour	Effect
1	Totally unfamiliar	0.45	Compliance unimportant	0.65
	Performed at speed		Easy to violate	
	No idea of possible consequences		Little inducement to comply	


3	Complex task High level of comprehension High level of skill	0.84	Personal benefit from non- compliance Moderate to high likelihood of detection	.82

6	6 Routine task – highly practices		Socially unacceptable	0.9998
Rapid delivery			Chance of detection high	
	Low level of skill	Chance of bad outcome high		

#	No Error	No Violation	Success!
1	0.45	0.65	0.29
3	0.84	0.82	0.69
6	0.98	0.9998	0.9798

Does it work? - Outcomes achieved!

FMECA/RCM
Process applied

Results Achieved

- Process used in the initial program to test guesses (2001-2002)
- Then used to verify and update the program 10 years later
- Finally used to verify task effectiveness for improvement potential
- Savings over life were in excess of 65%

Verifying Your Condition Monitoring - Summary

Use a risk based quantitative analysis method.

Use best information at the time to set task period baseline.

Deliver tasks to that baseline and collect data to verify the outcome.

Re-do the analysis and take the verified savings.

Thank you for this opportunity to share